Physical and Chemical Signals That Promote Vascularization of Capillary-Scale Channels.

نویسندگان

  • Raleigh M Linville
  • Nelson F Boland
  • Gil Covarrubias
  • Gavrielle M Price
  • Joe Tien
چکیده

Proper vascularization remains critical to the clinical application of engineered tissues. To engineer microvessels in vitro, we and others have delivered endothelial cells through preformed channels into patterned extracellular matrix-based gels. This approach has been limited by the size of endothelial cells in suspension, and results in plugging of channels below ~30 μm in diameter. Here, we examine physical and chemical signals that can augment direct seeding, with the aim of rapidly vascularizing capillary-scale channels. By studying tapered microchannels in type I collagen gels under various conditions, we establish that stiff scaffolds, forward pressure, and elevated cyclic AMP levels promote endothelial stability and that reverse pressure promotes endothelial migration. We applied these results to uniform 20-μm-diameter channels and optimized the magnitudes of pressure, flow, and shear stress to best support endothelial migration and vascular stability. This vascularization strategy is able to form millimeter-long perfusable capillaries within three days. Our results indicate how to manipulate the physical and chemical environment to promote rapid vascularization of capillary-scale channels within type I collagen gels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot control system using SMR signals detection

One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...

متن کامل

Microvascular Guidance: A Challenge to Support the Development of Vascularised Tissue Engineering Construct

The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer a...

متن کامل

Experimental and Numerical Pore Scale Study of Residual Gas Saturation in Water/Gas Imbibition Phenomena

Residual gas saturation is one of the most important parameter in determining recovery factor of water-drive gas reservoir. Visual observation of processes occurring at the pore level in micromodels can give an insight to fluid displacements at the larger scale and also help the interpretation of production performance at reservoir scale. In this study experimental tests in a glass micromod...

متن کامل

Characterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs

Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...

متن کامل

Front pinning in capillary filling of chemically coated channels.

The dynamics of capillary filling in the presence of chemically coated heterogeneous boundaries is investigated both theoretically and numerically. In particular, by mapping the equations of front motion onto the dynamics of a dissipative driven oscillator, an analytical criterion for front pinning is derived under the condition of diluteness of the coating spots. The criterion is tested agains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular and molecular bioengineering

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2016